Projective φ-symmetric K-contact manifold admitting quarter-symmetric metric connection
نویسندگان
چکیده
We obtain curvature tensor R̃(X, Y )Z w.r.t quarter-symmetric metric connection in terms of curvature tensor R(X,Y )Z relative to the Levi-civita connection in a K-contact manifold. Further, locally φ-symmetric, φ-symmetric and locally projective φ-symmetric K-contact manifolds with respect to the quarter-symmetric metric connection are studied and some results are obtained. The results are assisted by examples. M.S.C. 2010: 53C05, 53D10, 53C25.
منابع مشابه
On Φ-symmetric Lp-sasakian Manifolds Admitting Semi-symmetric Metric Connection
The object of the present paper is to study locally φsymmetric LP-Sasakian manifolds admitting semi-symmetric metric connection and obtain a necessary and sufficient condition for a locally φsymmetric LP-Sasakian manifold with respect to semi-symmetric metric connection to be locally φ-symmetric LP-Sasakian manifold with respect to Levi-Civita connection. AMS Mathematics Subject Classification ...
متن کاملPseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملInvariant Submanifolds of Kenmotsu Manifolds Admitting Quarter Symmetric Metric Connection
The object of this paper is to study invariant submanifolds M of Kenmotsu manifolds M̃ admitting a quarter symmetric metric connection and to show that M admits quarter symmetric metric connection. Further it is proved that the second fundamental forms σ and σ with respect to LeviCivita connection and quarter symmetric metric connection coincide. Also it is shown that if the second fundamental f...
متن کاملAlmost Contact Metric Manifolds Admitting Semi-symmetric Non-metric Connection (communicated by Uday Chand De)
In this paper, we study some geometrical properties of almost contact metric manifolds equipped with semi-symmetric non-metric connection. In the last, properties of group manifold are given.
متن کاملSome vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006