Projective φ-symmetric K-contact manifold admitting quarter-symmetric metric connection

نویسندگان

  • K. T. Pradeep Kumar
  • C. S. Bagewadi
چکیده

We obtain curvature tensor R̃(X, Y )Z w.r.t quarter-symmetric metric connection in terms of curvature tensor R(X,Y )Z relative to the Levi-civita connection in a K-contact manifold. Further, locally φ-symmetric, φ-symmetric and locally projective φ-symmetric K-contact manifolds with respect to the quarter-symmetric metric connection are studied and some results are obtained. The results are assisted by examples. M.S.C. 2010: 53C05, 53D10, 53C25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Φ-symmetric Lp-sasakian Manifolds Admitting Semi-symmetric Metric Connection

The object of the present paper is to study locally φsymmetric LP-Sasakian manifolds admitting semi-symmetric metric connection and obtain a necessary and sufficient condition for a locally φsymmetric LP-Sasakian manifold with respect to semi-symmetric metric connection to be locally φ-symmetric LP-Sasakian manifold with respect to Levi-Civita connection. AMS Mathematics Subject Classification ...

متن کامل

Pseudo Ricci symmetric real hypersurfaces of a complex projective space

Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.

متن کامل

Invariant Submanifolds of Kenmotsu Manifolds Admitting Quarter Symmetric Metric Connection

The object of this paper is to study invariant submanifolds M of Kenmotsu manifolds M̃ admitting a quarter symmetric metric connection and to show that M admits quarter symmetric metric connection. Further it is proved that the second fundamental forms σ and σ with respect to LeviCivita connection and quarter symmetric metric connection coincide. Also it is shown that if the second fundamental f...

متن کامل

Almost Contact Metric Manifolds Admitting Semi-symmetric Non-metric Connection (communicated by Uday Chand De)

In this paper, we study some geometrical properties of almost contact metric manifolds equipped with semi-symmetric non-metric connection. In the last, properties of group manifold are given.

متن کامل

Some vector fields on a riemannian manifold with semi-symmetric metric connection

In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006